Isometric Group Actions on Hilbert Spaces: Growth of Cocycles
نویسندگان
چکیده
منابع مشابه
Isometric group actions on Hilbert spaces: growth of cocycles
We study growth of 1-cocycles of locally compact groups, with values in unitary representations. Discussing the existence of 1-cocycles with linear growth, we obtain the following alternative for a class of amenable groups G containing polycyclic groups and connected amenable Lie groups: either G has no quasi-isometric embedding into a Hilbert space, or G admits a proper cocompact action on som...
متن کاملIsometric group actions on Hilbert spaces: structure of orbits
Our main result is that a finitely generated nilpotent group has no isometric action on an infinite-dimensional Hilbert space with dense orbits. In contrast, we construct such an action with a finitely generated metabelian group. Mathematics Subject Classification: Primary 22D10; Secondary 43A35, 20F69.
متن کاملOrbit Spaces Arising from Isometric Actions on Hyperbolic Spaces
Let be a differentiable action of a Lie group on a differentiable manifold and consider the orbit space with the quotient topology. Dimension of is called the cohomogeneity of the action of on . If is a differentiable manifold of cohomogeneity one under the action of a compact and connected Lie group, then the orbit space is homeomorphic to one of the spaces , , or . In this paper we suppo...
متن کاملProperly Discontinuous Isometric Actions on the Unit Sphere of Infinite Dimensional Hilbert Spaces
We study the properly discontinuous and isometric actions on the unit sphere of infinite dimensional Hilbert spaces and we get some new examples of Hilbert manifold with constant positive sectional curvature. We prove some necessary conditions for a group to act isometrically and properly discontinuously, and in the case of finitely generated Abelian groups the necessary and sufficient conditio...
متن کاملProper Isometric Actions of Thompson’s Groups on Hilbert Space
In 1965, Thompson defined the groups F, T , and V [8]. Thompson’s group V is the group of right-continuous bijections v of [0, 1] that map dyadic rational numbers to dyadic rational numbers, that are differentiable except at finitely many dyadic rational numbers, and such that, on each interval on which v is differentiable, v is affine with derivative a power of 2. The group F is the subgroup o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: GAFA Geometric And Functional Analysis
سال: 2007
ISSN: 1016-443X,1420-8970
DOI: 10.1007/s00039-007-0604-0